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Abstract — The paper describes the development of
the adaptable symmetrical condensed TLM node (ASCN).
The node exploits the opposing contributions to dispersion
of stubs and link lines to minimize numerical errors. It is
shown that this approach is effective and can be used to op-
timize nodal properties according to problem requirements.

1 INTRODUCTION

The process of discretization in space, inherent to
all numerical solution schemes, introduces propaga-
tion errors in the transmission-line modelling (TLM)
method. Additional propagation errors are introduced
when modelling non-uniform materials and/or using
non-cubic nodes (graded mesh). These errors decrease
as space resolution increases, but there are practical
limitations, brought about by run-time and storage re-
quirements, to the extent that accuracy can be im-
proved in this way. Hence, other approaches should
be employed to develop more accurate schemes.

Local deviation in material properties and changes
of cell aspect ratio are described in the TLM symmet-
rical condensed node (SCN) by adding stubs and/or
modifying the link line impedances [1]-[4]. From
the unified formulation of the TLM parameters [5]
it follows that an infinite set of SCN-based schemes
can be developed. All these schemes can be unified
through the formulation of a general symmetrical con-
densed node (GSCN) [6]. Applying additional con-
straints to the GSCN, the stub-loaded SCN [1], hybrid
SCN (HSCN) [2], symmetrical super-condensed node
(SSCN) [3] and matched SCN (MSCN) [4], as well as
other new, hitherto unexplored, schemes, can be de-
rived.

In this paper, we exploit the opposing contribu-
tions to dispersion of stubs and link lines observed in
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the available TLM nodes [7]-[9] to develop a class
of novel nodes, referred to as the adaptable SCN
(ASCN). It is shown that they possess advantageous
dispersion properties and substantially improved nu-
merical accuracy compared to previous nodes.

2 THEORETICAL DEVELOPMENT

We illustrate here the development of the ASCN for a
uniform mesh of node spacing Al, where two possi-
ble values of link line impedances, Z, and Z,, and
open- and short-circuit stubs of admittance Y, and
impedance Z, respectively, are allowed. The TLM
constitutive relations for the GSCN take the form:

Y, Al
Y, +Y,+— = e—
nt+ ¥Yp+ 2 EAt )
Zs Al
Zn+ 2Zp + 5 = b 2

where Y, = 1/Z, and Y, = 1/Z,. If the link lines
model a proportion of the medium parameters denoted
by (wee, wyp), where w, and w), are arbitrary dimen-
sionless weights, it follows that:

Al
Al
Zn + Zp = wyum 4

Combining (3) with (4), the link line impedances
are obtained as:

Zn = Z1A Zp=21/A &)
where
7 = Zoy|—br ©)
wger
A = \/wgw,,ureT + \/wgwpurer -1
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Inserting (3)—(4) into (1)—(2), the stub parameters are
found as:

Y, = 4Y/Erpr (1 — we) 3
Zs = 4Z\/erpir(1 —wy) )

where Z = 1/Y = \/uu/e.

The parameters of the GSCN for a uniform mesh
are therefore defined by eqns. (5)—(9) in terms of the
arbitrary weights w, and w,. For example, the stub-
loaded SCN is defined by (5)-(9) if w, = 1/e, and
wy, = 1/py. Similarly, selecting we = 1/(eru,) and
wy, = 1, the HSCN is formulated. In case of the
SSCN, the requirements are w, = wy, = 1, while for
the MSCN we need w, = w, = 1/,/Erfir.

The dispersion behaviour of the available con-
densed nodes can be interpreted through w, and wy,.
For example, dispersion in the stub-loaded SCN is
dependent on the ratio &, /u, for e,p, = const [8],
which is a direct result of w. and w, not being func-
tions of the product &, u,. Similarly, two physical so-
lutions to the dispersion relation, corresponding to dif-
ferent field polarizations, are experienced in the stub-
loaded SCN and the HSCN [9], which is the conse-
quence of selecting w, # wy. As these observations
are at variance with Maxwell’s equations, we avoid
them in the development of the ASCN by choosing
we = Wy, = w, where w is a function of &, 1.

Using the approach described in [8], the dispersion
relation of the GSCN with w, = wj, can be derived in
an implicit polynomial form, allowing the study of dis-
persion in the GSCN as function of w. The SSCN and
the MSCN can be considered as special cases of such
a general SCN with w, = w,, = w. While in the stub-
less SSCN all excess material parameters are modelled
through the variation of link line impedances, in the
MSCN it is done exclusively through the stubs. From
the dispersion analysis it can be seen that these two ap-
proaches in modelling the variation in material param-
eters have opposing effects on propagation errors [4].
This is illustrated in Fig. 1 for three principal propaga-
tion directions. Since the SSCN is defined by w = 1
and the MSCN is defined by w = 1/,/&-fi; it is clear
that by choosing 1//€7fi; < w < 1 a whole class of
adaptable nodes may be obtained with propagation er-
rors constrained between the errors for the SSCN and
the MSCN.
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Figure 1:  Percentage propagation error in the MSCN and the

SSCN for Al/A =0.1

Naturally, in order to compensate errors occuring
in the MSCN and SSCN, the weighting function w of
the ASCN should be chosen as a sunitable mean func-
tion limited by 1/, /g, i, and unity. For example, the
arithmetic and geometric means of these limits are:

_ VErlr + 1 1
2\/ Erlhr Verir

respectively. The weighting function w can be also se-
lected according to problem requirements. For exam-
ple, after a detailed analysis of the dispersion relation
of the GSCN (not included here), a suitable function
which minimizes errors for axial propagation and pro-

and

(10)

Wy ’U)g =

- duces unilateral dispersion is found as:
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Using the three functional forms of w described above,
the propagation errors of the ASCN for three principal
propagation directions are plotted in Fig. 2.

A comparison between the propagation errors of
the ASCN, plotted in Fig. 2, and those of the SSCN
and the MSCN plotted in Fig. 1, clearly demonstrates
that the error in the ASCN, for any of the weighting
functions used, is indeed contained between the errors
in the MSCN and the SSCN. A direct result of this is
that the error range in the ASCN with w = w, and
particularly with w = w,, is significantly smaller than
in the SSCN and MSCN.

Fig. 3 shows the percentage propagation error (rel-
ative deviation in the propagation vector for a bench-
mark discretization of ten nodes per wavelength [8])

an
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Figure 2: Percentage propagation error in the ASCN for

Al/X = 0.1 using wq, wy and w,

for the ASCN with w = w, for different values
of ey, and for propagation along a diagonal plane
T y. The error is plotted versus the angle ¢
formed by the propagation vector and the z-axis. In
this case, propagation along directions [mmn], such
as [001], [110] and [111], can be studied. It can be
seen from Fig. 3 that errors in the ASCN with w = w,,
extend only in the positive direction (unilateral disper-
sion) and increase with an increase in £, (..

Fig. 4 compares the propagation errors for the
ASCN (w = w,) with those obtained using the MSCN
and the SSCN, for propagation along the diagonal
plane z = y. It is clear that a substantial reduction
in propagation errors is obtained with the ASCN, al-
lowing for a more accurate modelling of non-uniform
problems in TLM than was allowed by the previous
nodes.

Using the definition of the GSCN [6], the devel-
opment of the adaptable nodes presented here for the
uniform mesh, can be readily generalized for a mesh
with cuboid (graded) nodes. The optimization of the
nodal properties can be achieved, in this case, using
weighting functions in terms of At/Atpy,x, Where At
is the actual time step of the mesh, while At .y is the
maximum permissible time-step on which the partic-
ular node can operate [3]. In the case of a cubic node
mesh, when the time step At is chosen according to
the background properties, it follows that

At 1
Atmax VErlr

It is clear therefore that the weighting functions de-

(12)
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Figure3: Percentage propagation error in the ASCN (w = w,,)
for propagation along diagonal plane z = y (Al/\ = 0.1)
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Figure 4:  Comparison of propagation errors in the ASCN
(solid lines), the SSCN (dotted lines) and the MSCN (broken
lines) for Al/A = 0.1 and e, pr € {2,4,8,16} (direction of
the increase in €, pt, is denoted by arrows)

scribed by eqns. (10)—(11) can be rewritten in terms
of At/Atmax, according to eqn. (12), and used in the
definition of the graded ASCN.

3 NUMERICAL EXAMPLES

In order to validate numerical properties of the adapt-
able nodes, we modelled a partially filled canonical
waveguide (¢ = 2.286cm, b = 1.016cm, h = b/3,
er = 2.56), depicted in Fig. 5, using a uniform TLM
mesh with node spacing Al = b/12. We performed
TLM simulations using adaptable nodes with weight-
mg functions w We, W Wy, W 1 (the
SSCN), w 1/ VErpr (the MSCN), as well as us-
ing the HSCN (which in this case equals the traditional



Partially loaded rectangular waveguide

Figure 5:

stub-loaded SCN). A summary of analytical and simu-
lated cutoff frequencies of two lower frequency hybrid
modes are presented in Table 1.

TEq, ™,

fIGHz] | 6f [%] | fIGHz] | 6 [%]
Analyt. 12.612 13.669
SSCN 12.597 | -0.119 | 13.652 | -0.124
ASCNYe | 12.604 | -0.063 | 13.665 | -0.029
ASCNY= | 12.606 | -0.048 | 13.667 | -0.015
HSCN 12.626 | +0.111 | 13.683 | +0.102
MSCN 12.631 | +0.151 | 13.693 | +0.176

Table1: Cutoff frequencies

It can be seen from Table 1 that the simulated fre-
quencies for the ASCN are always between the re-
sults obtained with the SSCN and the MSCN and
that they are the most accurate. Results obtained by
modelling a higher cutoff frequency, e.g. for TEY,
mode, where only around five nodes per wavelength
are used and hence numerical dispersion is increased,
are highlighted in Fig. 6. The improved accuracy of
the ASCN, both with w wa (ASCNa) and with
w = w, (ASCNu) can be observed again. Note that
the relative frequency error (calculated in the exam-
ples of this section) and the propagation error (plotted
in Figs. 1-4), have opposite signs [8].

4 CONCLUSION

Using the framework of the general symmetrical con-
densed node (GSCN), we have developed a class of
new adaptable nodes (ASCN), whose numerical prop-
erties can be customized by an arbitrary weighting

434

E. (nV/m/Hz)

sC
it
37. 375 38.0 385
frequency (GHz)
Figure 6:  Frequency response of the waveguide around cutoff

frequency of TEY, mode

function. Some of the possible weighting functions
which optimize dispersion properties and minimize
propagation errors were investigated. The improved
accuracy of these schemes was illustrated by the ex-
ample of modelling an inhomogeneous waveguide.
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