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Abstract – The paper describes the development of

the adaptable symmetrical condensed TLM node (ASCN).

The node exploits the opposing contributions to dispersion

of stubs and link lines to minimize numerical errors. It is

shown that this approach is effective and can be used to op-

timize nodal properties according to problem requirements.

the available TLM nodes

of novel nodes, referred

[7]-[9] to develop a class

to as the adaptable SCN

(ASCN). It is shown that they possess advantageous

dispersion properties and substantially improved nu-

merical accuracy compared to previous nocles.

2 THEORETICAL DEVELOPMENT

1 INTRODUCTION

The process of discretization in space, inherent to

all numerical solution schemes, introduces propaga-

tion errors in the transmission-line modelling (TLM)

method. Additional propagation errors are introduced

when modelling non-uniform materials and/or using

non-cubic nodes (graded mesh).’ These errors decrease

as space resolution increases, but there are practical

limitations, brought about by run-time and storage re-

quirements, to the extent that accuracy can be im-

proved in this way. Hence, other approaches should

be employed to develop more accurate schemes.

Local deviation in material properties and changes

of cell aspect ratio are described in the TLM symmet-

rical condensed node (SCN) by adding stubs and/or

modifying the link line impedances [1]–[4]. From

the unified formulation of the TLM parameters [5]

it follows that an infinite set of SCN-based schemes

can be developed. All these schemes can be unified

through the formulation of a general symmetrical con-

densed node (GSCN) [6]. Applying additional con-

straints to the GSCN, the stub-loaded SCN [1 ], hybrid

SCN (HSCN) [2], symmetrical super-condensed node

(SSCN) [3] and matched SCN (MSCN) [4], as well as

other new, hitherto unexplored, schemes, can be de-

rived.

In this paper, we exploit the opposing contribu-

tions to dispersion of stubs and link lines observed in

We illustrate here the development of the ASCN for a

uniform mesh of node spacing Al, where two possi-

ble values of link line impedances, Z. and 2P, and

open- and short-circuit stubs of admittance YO and

impedance ‘Z$, respectively, are allowed. The TLM

constitutive relations for the GSCN take the form:

Yn+Yp+:
Al

= ‘E
(1)

(2)
,4 Ub

where Yn = 1/Zn and YP = l/ZP. If the link lines

model a proportion of the medium parameters denoted

by (~,g, Wpp), where w, and WP are arbitrary dimen-

sionless weights, it follows that:

Y71+ Yp
Al

= “EE

Z.+ z-p
Al

= wpp-&

(3)

(4)

Combining (3) with (4), the link line impedances

are obtained as:

2. = 21A 2P= Z1/A (5)

where

(6)

r—A = ~W + W. Wp/.JTEr – 1 (7)
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Inserting (3)–(4) into (l)–(2), the stub parameters are

found as:

Y. = 4Y=(1 – w.) (8)

z, = 42-(1 – WY) (9)

where Z = l/Y = ~.

The parameters of the GSCN for a uniform mesh

are therefore defined by eqns. (5)–(9) in terms of the

arbitrary weights w= and WK. For example, the stub-

loaded SCN is defined by (5)-(9) if we = l/er and

WV = l/pr. Similarly, selecting WE = 1/ (&rPr) and

Wp = 1, the HSCN is formulated. In case of the

SSCN, the requirements are w, = Ww = 1, while for

the MSCN we need WE = WP = 1/-.

The dispersion behaviour of the available con-

densed nodes can be interpreted through WS and WP.

For example, dispersion in the stub-loaded SCN is

dependent on the ratio &,/pr for &rpr = corwt [8],

which is a direct result of w= and WP not being func-

tions of the product erpr. Similarly, two physical so-

lutions to the dispersion relation, corresponding to dif-

ferent field polarizations, are experienced in the stub-

loaded SCN and the HSCN [9], which is the conse-

quence of selecting w. # WP, As these observations

are at variance with Maxwell’s equations, we avoid

them in the development of the ASCN by choosing

WC = WP = w, where w is a function of &rpv.

Using the approach described in [8], the dispersion

relation of the GSCN with we = WP can be derived in

an implicit polynomial form, allowing the study of dis-

persion in the GSCN as function of w. The SSCN and

the MSCN can be considered as special cases of such

a general SCN with WE = WN = w. While in the stub-

less SSCN all excess material parameters are modelled

through the variation of link line impedances, in the

MSCN it is done exclusively through the stubs. From

the dispersion analysis it can be seen that these two ap-

proaches in modelling the variation in material param-

eters have opposing effects on propagation errors [4],

This is illustrated in Fig. 1 for three principal propaga-

tion directions. Since the SSCN is defined by w = 1

and the MSCN is defined by w = 1/- it is clear

that by choosing 1/- < w < 1 a whole class of

adaptable nodes

rors constrained

the MSCN.

may be obtained with propagation er-

between the errors for the SSCN and
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F@re 1: Percentage propagation error in the MSCN and the

SSCN for A1/~ = 0.1

Naturally, in order to compensate errors occuring

in the MSCN and SSCN, the weighting function w of

the ASCN should be chosen as a suitable mean func-

tion limited by 1/- and unity. For example, the

arithmetic and geometric means of these limits are:

Wa=m+l ~d

1

2-
— (lo)

‘g=m

respectively. The weighting function w can be also se-

lected according to problem requirements. For exam-

ple, after a detailed analysis of the dispersion relation

of the GSCN (not included here), a suitable function

which minimizes errors for axial propagation and pro-

duces unilateral dispersion is found as:

(11)

Using the three functional forms of w described above,

the propagation errors of the ASCN for three principal

propagation directions are plotted in Fig. 2.

A comparison between the propagation errors of

the ASCN, plotted in Fig. 2, and those of the SSCN

and the MSCN plotted in Fig. 1, clearly demonstrates

that the error in the ASCN, for any of the weighting

functions used, is indeed contained between the errors

in the MSCN and the SSCN. A direct result of this is

that the error range in the ASCN with w = Wa and

particularly with w = w. is significantly smaller than

in the SSCN and MSCN.

Fig. 3 shows the percentage propagation error (rel-

ative deviation in the propagation vector for a bench-

mark discretization of ten nodes per wavelength [8])
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Figure 2: Percentage propagation error in the ASCN for

A1/A = 0.1 using Wo, Wg and Wu

for the ASCN with w = WU for different values

of &rpT and for propagation along a diagonal plane

z = y. The error is plotted versus the angle w

formed by the propagation vector and the z-axis. In

this case, propagation along directions [mm-m], such

as [001], [110] and [111], can be studied. It can be

seen from Fig. 3 that errors in the ASCN with w = WU

extend only in the positive direction (unilateral disper-

sion) and increase with an increase in Erpr.

Fig. 4 compares the propagation errors for the

ASCN (w = WU) with those obtained using the MSCN

and the SSCN, for propagation along the diagonal

plane z = y. It is clear that a substantial reduction

in propagation errors is obtained with the ASCN, al-

lowing for a more accurate modelling of non-uniform

problems in TLM than was allowed by the previous

nodes.

Using the definition of the GSCN [6], the devel-

opment of the adaptable nodes presented here for the

uniform mesh, can be readily generalized for a mesh

with cuboid (graded) nodes. The optimization of the

nodal properties can be achieved, in this case, using

weighting functions in terms of At/Atmax, where At

is the actual time step of the mesh, while At~aX is the

maximum permissible time-step on which the partic-

ular node can operate [3]. In the case of a cubic node

mesh, when the time step At is chosen according to

the background properties, it follows that

(12)

It is clear therefore that the weighting functions de-
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Figure 3: Percentage propagation error in the ASCN (w = Wu)

for propagation along diagonal plane z = y (A1/A = 0.1)
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Figure 4: Comparison of propagation errors in the ASCN

(solid lines), the SSCN (dotted lines) and the MSCN (broken

lines) for A1/A = 0.1 and Srp, G {2,4,8, 16} (direction of

the increase in s,p, is denoted by arrows)

scribed by eqns. ( 10)–( 11 ) can be rewritten in terms

of At/Atm=, according to eqn, (12), and used in the

definition of the graded ASCN.

3 NUMERICAL EXAMPLES

In order to validate numerical properties of the adapt-

able nodes, we modelled a partially filledl canonical

waveguide (a = 2.286cm, b = 1.016cm, h = b/3,

CT = 2.56), depicted in Fig. 5, using a uniform TLM

mesh with node spacing Al = b/12. We performed

TLM simulations using adaptable nodes with weight-

ing functions w = Wa, w = WU, w = 1 (the

SSCN), w = 1/- (the MSCN), as well as us-

ing the HSCN (which in this case equals the traditional
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modes are presented in Table 1.

EAnalyt.

SSCN

ASCNw”

ASCNWU

HSCN

MSCN

TE

j[GHz]

12.612

12.597

12.604

12.606

12.626

12.631

1
df [%]

-0.119

-0.063

-0.048

+0.111

+0.151

T1

f [GHz]

13.669

13.652

13.665

13.667

13.683

13.693

f

if [%]

-0.124

-0.029

-0.015

+0.102

+0.176

Table 1: Cutoff frequencies

It can be seen from Table 1 that the simulated fre-

quencies for the ASCN are always between the re-

sults obtained with the SSCN and the MSCN and

that they are the most accurate. Results obtained by

modelling a higher cutoff frequency, e.g. for TE&

mode, where only around five nodes per wavelength

are used and hence numerical dispersion is increased,

are highlighted in Fig. 6. The improved accuracy of

the ASCN, both with w = w. (ASCNa) and with

w = WU (ASCNU) can be observed again. Note that

the relative frequency error (calculated in the exam-

ples of this section) and the propagation error (plotted

in Figs. 1-4), have opposite signs [8].

4 CONCLUSION

Using the framework of the general symmetrical con-

densed node (GSCN), we have developed a class of

new adaptable nodes (ASCN), whose numerical prop-

erties can be customized by an arbitrmy weighting

,

20 -
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Figure 6: Frequency response of the waveguide around cutoff

frequency of TE~3 mode

function. Some of the possible weighting functions

which optimize dispersion properties and minimize

propagation errors were investigated. The improved

accuracy of these schemes was illustrated by the ex-

ample of modelling an inhomogeneous waveguide.
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